w

© ® N o o R

10

11

12

13

Functions and projects
Recall the temperature conversion program, conversion.c.

conversion.c

#include <stdio.h>

int main(int argc, char **argv)

{
int fahrenheit, celsius;
celsius = -40;
fahrenheit = 9 * celsius / 5 + 32;
printf("%d Celsius is Jd Fahrenheit.\n", celsius, fahrenheit);
return O;
}

The main function here demonstrates the syntax for defining functions, and
the call to printf the syntax for calling them. Let us emphasize both by
creating a new function: Factor the temperature conversion math out from its
input values and what is done with the result, into its own reusable function,
convert.

conversion2.c

#include <stdio.h>

int convert(int celsius)

{
return 9 * celsius / 5 + 32;

}

int main(int argc, char *xargv)

{
int fahrenheit, celsius;
celsius = -40;
fahrenheit = convert(celsius);
printf ("%d Celsius is J%d Fahrenheit.\n", celsius, fahrenheit);
return O;

}

The order of these definitions is very important. If convert were to appear
after main in the file, even with everything else unchanged, gcc would complain.

$ gcc -Wall -g -o conversion2 conversion2.c
conversion2.c: In function main:
conversion2.c:7: warning: implicit declaration of function convert

The compiler has to know about a function before it is called, or else it won’t
know how to make sure it is being used correctly. However, it doesn’t need to

11

12

13

14

know the whole definition, just the arguments and return type. A “prototype”
is simply a function declaration without the associated definition, and is enough
for the compiler can check and compile the code correctly.

conversion3.c

#include <stdio.h>
int convert(int celsius);

int main(int argc, char *xargv)

{
int fahrenheit, celsius;
celsius = -40;
fahrenheit = convert(celsius);
printf("%d Celsius is Jd Fahrenheit.\n", celsius, fahrenheit);
return O;

}

int convert(int celsius)

{
return 9 * celsius / 5 + 32;

}

Prototypes for a larger project or library are generally collected together into
one or more header files. Whereas actual C code containing definitions generally
resides in files with a .c extension, C language header files generally reside in
files with a .h extension. Furthermore, C supports what is known as “separate
compilation”—not all of the definitions need to reside in the same file, so long as
the compiler knows all of the prototypes it needs to compile each one separately;
the resulting individual object files are not executable independently, but the
compiler can then link them together into one executable.

One excellent way to organize a project is to put each function in its own
.c file, and put all of the prototypes together in a .h file. The preprocessor
#include directive, which we have already seen for bringing in system-wide
headers, is also used to bring in local headers. Thus, we can break the conver-
sion program into three files and then compile all of them together. The main
function goes, alone, in conversion4.c.

conversion4.c

#include <stdio.h>
#include "convert.h"

int main(int argc, char *xargv)

{
int fahrenheit, celsius;
celsius = -40;
fahrenheit = convert(celsius);
printf("%d Celsius is Jd Fahrenheit.\n", celsius, fahrenheit);
return O;
}

ooe W N

The name of the header file is in quotes, rather than brackets, which tells the
preprocessor to look for it in the same directory as the . c file, instead of looking
for it in the system-wide directories where headers like stdio.h are installed.

The header itself, convert.h, only contains the prototypes (in this case, just
the one prototype).

convert.h

int convert(int celsius);

Finally, the temperature-conversion function can reside in its own file, convert.c.
(It is not a coincidence that the file is named after the function. The compiler
does not care in the slightest, but you as a human want to remain sane.)

convert.c

#include "convert.h"

int convert(int celsius)

{
return 9 * celsius / 5 + 32;

}

Now, the two C files are compiled separately and then linked together before
there is an executable. The -c flag tells gcc to compile but not link; the
intermediate files thus produced traditionally bear the .o extension.

$ gcc -Wall -g -c -0 conversion4.o conversion.c

$ gcc -Wall -g -c¢ -o convert.o convert.c

$ gcc -Wall -g -o conversiond conversion.o convert.o
$./conversiony

-40 Celsius is -40 Fahrenheit.

Notice that convert.c includes the header even though it does not actually
need it. This is a good idea for two reasons. The first is that a larger project
the functions will probably call each other, and thus need to know about each
other anyway. The second even applies here, and is simply that it enables the
compiler to detect if the prototype and the actual definition do not match. For
instance, if we change the argument to a double, gcc issues an error.

$ gcc -Wall -g -c -o convert.o convert.c
convert.c:3: error: conflicting types for convert
convert.h:1: note: previous declaration of convert was here

Without including the header file, this error would be silently and very
confusingly accepted.

Actually, this demonstration of breaking convert.c also demonstrated the
main advantage of separate compilation: Changes in one file require it to be
recompiled, as always, but there is no need to recompile any of the other, un-
changed files, just relink to bring in the one updated object file. Thus, after
fixing convert.c, all that is required is:

$ gcc -Wall -g -c¢ -o convert.o convert.c

$ gcc -Wall -g -o conversiond conversion.o convert.o
$./conversiony

-40 Celsius is -40 Fahrenheit.

There is a UNIX command called make that exploits this capability even
further. You write a file named Makefile, which just sits in the same directory
as your project, and describes what source files are used to build which object
files, what headers they depend on, and so forth. After you invest the effort to
create it, however, you can always build your entire project by simply typing
make. It will parse the Makefile, determine what files have been changed
based on their timestamps, and issue only those commands required to bring
everything up to date.

In fact, make is so optimized for C projects that it has default rules for
invoking gcc for compiling intermediate objects, linking them, et cetera. You
can customize its default invocation by providing gcc options in the CFLAGS
variable in the Makefile. Thus, here is a Makefile that builds conversion4
as above, automatically.

Makefile

CFLAGS=-Wall -g

conversion4: conversion4.o convert.o
conversion4.o: conversion4d.c convert.h
convert.o: convert.c convert.h

.PHONY: clean
clean:
rm -f conversion4 conversion4.o convert.o

The stuff at the bottom about clean adds a special extra thing you can
“build”. If you run the command make clean, it will remove the program and
object files, leaving you with your original, source-files-only working space. The
target is phony in the sense that it does not actually make a file named clean.
It is, however, often quite convenient.

