
Network Stacking Considered Harmful

Robert Surton
Cornell University
Ithaca, New York

burgess@cs.cornell.edu

ABSTRACT
The most important challenge facing the future Internet is
not technical, but is rather the need to justify placing trust
in the technical solutions. Current network models suffer
from limitations that result in practical deployments being
too complex to reason about. The novel channel market
model, based on composing networks by sharing channels
through a flat market, offers a better opportunity for reason-
ing. The old language is still useful, and continues to make
sense in the new model. Two design principles, the haggling
principle and the composition principle, provide hints for
discussing and designing networks in a channel market.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-
Communication Networks

General Terms
Reliability, Design

Keywords
Channels, network models, design principles, dependability

1. INTRODUCTION

Dependability is the ability to deliver service that can
justifiably be trusted.

—Avižienis et. al. [1]

The Internet is a marvelous invention, and we have been
inspired to expect more and more from it. In the future,
the smart power grid will communicate power like the Inter-
net communicates data, enabling less waste, fewer outages,
and more accurate pricing. Entertainment is being radically
changed by the ability to stream video on demand, wherever
we go. Telephone calls, even emergency calls, are leaving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’13, May 14–16, 2013, Ischia, Italy.
Copyright 2013 ACM 978-1-4503-2053-5 ...$15.00.

the old switched circuits and traveling through the Inter-
net. Medical records are becoming digital and federated, to
enable faster, more accurate health care.

The networking research of the last several decades has
provided technology for distributed computation, mobility,
fault tolerance, high throughput, load balancing, privacy,
and more—although the new applications bring new chal-
lenges, many of the technical ones can be solved today.

What holds us back now is dependability. Real-world im-
plementations are too complex to be convincingly trustwor-
thy. The interaction between different technologies combines
that intractable complexity with even poorer specification.
It is usually acceptable to have weak faith in web browsing,
shopping, and watching movies. On the other hand, while
I believe a smart power grid can be built now, I would be
wary to trust it now.

Caution also makes networks slow to adapt. That is why
many of the technologies of peer-to-peer computing are now
being revisited under the name of cloud computing; trust is
simpler within a datacenter owned by a single entity, and
that enables innovation that is nearly impossible in the In-
ternet.

I propose a new way to think about, talk about, and de-
sign networks, which I call the channel market model. I
will explain the model, and revisit some old design princi-
ples and abstractions in a way that faces the challenge of
dependability.

2. THE CHANNEL MARKET

The fundamental problem of communication is that of
reproducing at one point . . . a message selected at
another point.

—Claude Shannon [10]

The channel is the fundamental abstraction of communi-
cation [10]. A channel is any aspect of the environment that
can be observed by agents and interpreted to give meaning.
A network—or indeed any computation—consists of agents
observing channels, and acting on the meaning they infer by
manipulating further channels, which are observed by fur-
ther agents, and so on.

The channel notion is independent of scale. A channel can
be a fiber optic cable, a variable in a program, an entry in
a distributed key–value store, or a wire between logic gates.

Every channel is an abstraction. The reason for building
a TCP channel in terms of an IP subchannel in terms of an
Ethernet subchannel (and on down to the realm of physics)

Internet OSI

Application
Application 7
Presentation 6

Session 5
Transport Transport 4
Internet Network 3

Link
Data Link 2
Physical 1

Figure 1: The Internet and OSI network models side
by side. Both are layered, preventing networks from
building up mutually. They are also fixed in scale, so
protocols that build topologies using TCP or UDP
subchannels are relegated to being application-layer
overlays rather than true networks.

is that, for some applications, it is easier to reason about
correctness in terms of the guarantees of TCP rather than
the subchannels that implement it.

Thus, when designing a network to meet a new challenge,
it is fruitful to think of a marketplace full of channels. Con-
sider two examples, first a router, and then a web browser.

Routers are agents that are included in a network so that
each of the other agents can make a simplifying assumption:
that for each pair of them there is a channel that enables
them to communicate. One common implementation is for
all of the routers to flood information about their own chan-
nels, so that each of them eventually learns of all the chan-
nels available in the market. A router uses a shortest-paths
algorithm on its view of the market to find paths that can
be used to implement direct communication. It offers the
new channels into the market, so that other agents, such as
web browsers, can build from there.

Now consider how a web browser solves the problem of
downloading a web resource. The desired channel will carry
HTTP to a destination that is capable of serving the re-
quested resource, and HTTP in turn depends on a reliable,
byte-oriented subchannel. At the browser’s request, a TCP
agent can offer such a channel implemented in terms of an
appropriate IP subchannel, which might originally be found
in the market with the assistance of a DNS agent. After
building up the appropriate abstraction, the browser can
make its request.

The task of justifying trust in a network is simplified by
its construction from channels found in the market. Each
agent can be analyzed independently to show just one thing,
namely that when the agent offers a channel with some spec-
ification, it can keep that promise.

3. NETWORK STACKING CONSIDERED
HARMFUL

. . . the purpose of abstracting is not to be vague, but
to create a new semantic level in which one can be
absolutely precise.

—Edsger Dijkstra [5]

As a network model, the channel market model has two
competitors: the OSI model and the Internet model [2].
They both divide protocols into layers based on where in
the network they are implemented. For example, in the In-
ternet model, the link layer provides connectivity within lo-

cal networks, the Internet layer connects such networks into
a global address space, the transport layer adds end-to-end
functionality, and everything else is at the application layer.
The two models correspond closely, as shown in Figure 1, al-
though the OSI breaks the application and link layers down
into more specifics. The OSI model also numbers each layer,
which leads to terminology such as ‘layer 7 switch’ for a net-
work device that inspects application layer data to make
decisions.

There are two things wrong with the layered models. First,
layering puts unnecessary limits on how agents can compose
their functionality. Layering has, in fact, already been con-
sidered harmful by the IETF [3], in defense of the less strict
approach taken by their Internet model compared to the OSI
model.

Second, and worse, the models are wrong—real-world pro-
tocols have dealt with the limits of layering by sidestepping
it, so that although one of the advantages of layering should
be that each layer can evolve separately, in practice they are
very tightly coupled. For example, the TCP standard de-
fines the checksum for each segment to include header fields
from the IP version 4 packet that carries it. A separate stan-
dard specifies how to compute the checksum for version 6.
Using TCP over any other subchannel is undefined.

If the old models were just wrong, it would be easy enough
to throw them away; the real problem is that they are very
useful. Having language for the concepts of layer 2 and
layer 3 switches is so useful that when protocols like MPLS
started to blur the lines between those layers, the language
expanded to call them layer 2.5.

Thus, to ease the transition away from layering, I will
revisit some of the most useful concepts in the current lan-
guage, showing that they still make sense—generally more
sense—in the channel market model.

3.1 Control Plane
Control channels are the storefronts of a channel market.

A control channel carries and describes other channels. Al-
though it can be convenient to think of a channel market
as a pool of resources to be dipped from and poured into,
in fact there are only agents and channels. For example, a
routing agent offers a path channel to an IP agent, which
creates multiplexed channels from it and offers one to a TCP
agent, and so forth. Or, an agent sends a domain name to
a DNS agent, which responds by offering an appropriate IP
channel. Control channels are the metachannels for enabling
agents to create and offer the resources that come to be seen,
all together, as the channel market.

3.2 Paths
A path channel makes a symbol observable to its des-

tination through a sequence of subchannels, which in this
context might be called link channels, with the cooperation
of agents forwarding it from hop to hop. A path channel is
usually offered by an agent participating in a routing algo-
rithm, such as BGP or OSPF. If the agent discovers that
the path is no longer connected, it can implement the same
path channel transparently using a different sequence of sub-
channels; thus, path channels are the abstraction that hides
routing from agents that do not need to know.

3.3 Addresses and Ports
When an agent presents a subchannel as multiple, sepa-

rate channels, the offered channels can be called multiplexed
channels. Usually, a multiplexed channel is implemented
over a subchannel by simply adding a unique label that can
be used by the destination to distinguish the different mul-
tiplexed channels based on observations of the subchannel.
Based on the terminology of the abstraction being built,
such labels can be called addresses, protocols, or ports. For
example, IP provides 264 channels between agents, each of
which it multiplexes into 28 protocols, such as UDP or TCP.
UDP and TCP, in turn, multiplex each of their subchannels
into 232 flows labeled by ports.

3.4 Transport Layer
A transport channel adapts a single subchannel to present

a different abstraction. For example, TCP adapts an un-
reliable, message-oriented subchannel into a reliable, byte-
oriented channel. Ethernet adapts a constant-rate, symbol-
oriented subchannel into a frame-oriented channel. TLS
adds authenticity and privacy.

A transport channel can also be useful when it offers the
same abstraction as its subchannel, but hides its implemen-
tation so that the subchannel can be replaced.

The end-to-end principle [9] is one of the most success-
ful principles already used in network design; restated for a
channel market, it is the principle that whenever two agents
require some property to hold for a channel between them,
and that property can or must be provided by adapting it
with a transport channel, then the same property should not
be redundantly added to lower subchannels (unless doing so
provides a convincing performance advantage). Thus, trans-
port channels are one of the most common and important
concepts in channel market design.

3.5 Side Channels
A side channel provides information about another, oth-

erwise independent channel. For example, a sniffer mimics
the symbols sent on another channel. The statistics gath-
ered by firewalls and network devices are crucial side chan-
nels for maintaining networks. Side channels carry check-
sums, timestamps, and acknowledgments. As control chan-
nels are metachannel channels, side channels are metadata
channels.

3.6 Broadcast Channels
A broadcast channel replicates a symbol to all of its sub-

channels, usually with the purpose of delivering it to agents
that would otherwise not be able to observe a common chan-
nel. The same behavior can also be used when the subchan-
nels all have the same destination, enabling the channel to
tolerate faulty subchannels.

3.7 Anycast Channels
An anycast channel replicates each symbol to one of its

subchannels, generally with the intent that each destination
will respond equivalently. The same behavior can also be
used when the subchannels all have the same destination,
enabling the anycast channel to exploit their combined ca-
pacity.

3.8 Application Layer
An application channel communicates directly with the

environment. The environment might be a different abstrac-
tion in different channel markets, but it is always the case
that the application channels are the ones not used as sub-
channels of any other channel in the market.

4. DESIGN PRINCIPLES

There probably isn’t a ‘best’ way to build the system,
or even any major part of it; much more important is
to avoid choosing a terrible way, and to have a clear
division of responsibilities among the parts.

—Butler Lampson [7]

A design principle is a heuristic that helps a person to
avoid obvious poor choices, or to keep a model fresh in mind.
For example, the end-to-end principle [9] and the separation
of policy from mechanism [4] are two of the most important
defenses against bad networks. I propose two principles to
uphold the channel market model; they apply to the shop-
pers and to the sellers, respectively.

4.1 The Haggling Principle
Never accept more or less from the market than the net-

work needs. Choose channels based on their specifications,
with the primary goal of making the network simple to im-
plement and easy to reason about, and the secondary goal
of building on as few assumptions as possible. If the right
channels don’t exist, demand that some agent offers them,
even if you have to implement it yourself separately.

One of the biggest current failures with respect to the
haggling principle is in the concept of the ‘overlay network’.
All networks are overlays. In practice, the term ‘overlay’
usually implies that the network’s subchannels are provided
by UDP or TCP, which is an acceptance of too specific a
specification. One of the most important features of the
channel market is that it is flat, and all that matters is
the specification of the channels you shop for. If a network
design could work easily well over wires as over a structured
peer-to-peer topology, that is a strength.

Such haggling failures also lead to poor adaptability. For
example, the specification for the BGP routing protocol re-
quires the use of TCP, and although the HTTP standard
admits the existence of non-TCP transports, it is not clear
how one might negotiate to use any other. The result is that
alternative protocols such as SCTP see very little use, even
when widely implemented within operating systems.

The dual problem of specifying too much is not specifying
enough. It can be seen in many media streaming protocols,
which frequently build on top of best-effort channels, despite
really using partially-reliable, flow-controlled channels. The
protocol then has to implement reliability and flow control;
the added complexity is what lead to the modern practice
of doing most streaming over TCP, even though its spec-
ification is actually too strong, simply because it already
implements reliability and flow control.

4.2 The Composition Principle.
Compose networks by sharing channels. There are some

topologies that can be achieved when networks can mutually
share resources, that are impossible with strict layering. For
example, if a network partitions internally, the BGP routing

protocol could only connect half of it to the Internet, even
if both halves remain fully connected to the outside. If,
instead, the network could be seen at a finer granularity,
both halves could continue to use the resources available
to them; if, further, the internal routing could make use of
external links, the partition could be worked around until it
is repaired.

The composition principle is also the reminder that com-
position is desirable, and that any new functionality a net-
work creates should be offered back to the market. If not,
that particular implementation might benefit, but it will not
be reusable when it comes time to solve new problems.

What functionality should be offered? How much is too
much to combine in a single offer? There are many exam-
ples of mistakes of this kind in the real world. For example,
IP performs fragmentation and reassembly, checksumming,
multiplexing up to 28 higher-level transport channels, and
globally identifying up to 232 endpoints. TCP multiplexes
up to 216 higher-level application channels, provides redun-
dant checksumming, adapts a message-oriented channel into
a byte-oriented channel, reliably delivers each byte in order,
and performs flow control.

Those protocols have been designed that way because
those features have been deemed so useful to every potential
communication that implementing them separately and pay-
ing for the overhead of explicit composition would be waste-
ful. However, with TCP providing reliable byte streams,
and UDP providing unreliable message streams, there is no
standard overlay for reliable message streams. The gap is a
classic example of the failure of making protocols too big.
Alternatives such as SCTP had to be implemented to pro-
vide functionality that had already been implemented, such
as TCP’s reliability, but which came attached to additional
undesired features, such as TCP’s byte stream abstraction.

Fortunately, there is already a design principle to guide
us here: separation of concerns [6]. Two channels should be
separate if the interaction between them is small or simple
enough that each can be meaningfully studied and advanced
in isolation from the other. The information-hiding princi-
ple [8] is almost identical, and suggests dividing abstractions
based on how well it is possible to hide their implementa-
tions.

5. CONCLUSION

While the components of a complete solution . . . have
been the subject of extensive research and
standardization for more than 10 years, end-to-end
signaled QoS for the Internet has not become a reality.

—Some Internet Structural Guidelines
and Philosophy (RFC 3439) [3]

The future of the Internet is exciting. It is making promises,
from an efficient power grid to more accessible health care,

and the technology to make it possible is tantalizingly within
reach. What distinguishes the new promises from the old
ones, however, is that it unless we can justify placing our
trust in the solutions, it would be too dangerous to adopt
them.

The models we use for reasoning today are limited in scale
and composability, and, worse, those limits have resulted in
a reality that diverges widely from the model. Drawing on
old ideas, such as the channel as the fundamental unit of
communication, I have proposed a new model that enables
technical solutions to be reused more flexibly and better
reasoned about in isolation.

The first step in making the exciting future possible is
to talk about dependability and what we expect. Language
will be crucial for that discussion, and I have tried to provide
some of it in a new way, unencumbered by the old models.

Finally, we will have to start building systems with a
thought for justifying their correctness from the beginning.
There already exist some valuable design principles that
keep us honest in that regard, and I have proposed two new
ones, the haggling principle and the composition principle,
to try to keep the channel market model in mind.

Providing a language is barely even starting the discus-
sion, but I hope that the next steps will lead us places we
can’t even imagine yet.

6. REFERENCES
[1] A. Avižienis, J.-C. Laprie, B. Randell, and

C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. on
Dependable and Secure Computing, 1(1), 2004.

[2] R. Braden. Requirements for Internet
hosts—communication layers. RFC 1122.

[3] R. Bush and D. Meyer. Some Internet architectural
guidelines and philosophy. RFC 3439.

[4] D. D. Clark, J. Wroclawski, K. R. Sollins, and
R. Braden. Tussle in cyberspace: defining tomorrow’s
internet. IEEE/ACM Trans. Netw., 13(3), June 2005.

[5] E. W. Dijkstra. The humble programmer. Commun.
ACM, 15(10), 1972. Turing Award lecture.

[6] E. W. Dijkstra. On the role of scientific thought. In
Selected Writings on Computing: A Personal
Perspective, pages 60–66. Springer-Verlag, 1982.

[7] B. W. Lampson. Hints for computer system design.
Operating Systems Review, 15(5), Oct. 1983.

[8] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12), 1972.

[9] J. Saltzer, D. Reed, and D. Clark. End-to-end
arguments in system design. ToCS, 2(4), 1984.

[10] C. Shannon. A mathematical theory of
communication. Bell System Technical Journal, 27(3),
1948.

	Introduction
	The Channel Market
	Network Stacking ConsideredHarmful
	Control Plane
	Paths
	Addresses and Ports
	Transport Layer
	Side Channels
	Broadcast Channels
	Anycast Channels
	Application Layer

	Design Principles
	The Haggling Principle
	The Composition Principle.

	Conclusion
	References

